COPPER-CATALYZED CONJUGATE ADDITION OF ORGANOMAGNESIUM REAGENTS TO α , β -ETHYLENIC ESTERS: A SIMPLE HIGH YIELD PROCEDURE.

Gérard CAHIEZ * and Mouad ALAMI

Laboratoire de Chimie des Organoéléments, UA 473, tour 44-45 Université P. et M. Curie, 4 Place Jussieu F-75252 PARIS Cédex 05

Abstract: The conjugate addition of organomagnesium reagents to α , β -ethylenic esters is performed in THF, at room temperature (30 min to 1.5 h), in the presence of CuCl (3%) and Me3SiCl (1.2 eq.). Good yields of 1,4-addition products are obtained according to this very simple procedure.

Conjugate addition of organocopper or cuprate reagents to α , β -ethylenic esters is not easy to perform and very often requires both the use of various additives and low temperatures¹. In addition, the yields based on the starting organometallic reagents remain moderate since they range from 10 to 40%². These features represent a serious drawback for large scale preparative applications.

In theory, the copper-catalyzed conjugate addition of organomagnesium reagents to α , β -ethylenic esters appears more attractive. In fact, Munch-Petersen has shown that, in ether (0°C, 1 to 1.5 h), this reaction effectively leads to the 1,4-addition products in good yields (50 to 90%)³. However, the α , β -ethylenic esters must bear a large alkoxy group (e.g. s- or t-butyl ester) to avoid the competing Michael addition process and the reaction requires an important excess of the organomagnesium reagent (1.5 to 10 eq.)⁴. On the other hand, one example of coppercatalyzed addition has also been performed in THF, at -80°C, in the presence of 10% CuBr.Me₂S, Me₃SiCl (2eq.) and HMPT (3eq.)⁵. These reaction conditions are not suitable for preparative applications; moreover, no successful extention to the less reactive β -bisubstituted α , β -ethylenic esters, has been reported to our knowledge⁶.

Finally, two cases of conjugate addition in good yields of organomagnesium reagents to enoates in the presence of Cu^{II} salts (1 to 5% Cu^{II} salt, 1.5 eq. RMgBr) have been recently reported⁷ (yields of crude product: 99%). The reaction takes place in a mixture ether/THF at -46°C (1 h) in the presence of Me₃SiCl (3 eq.) or Me₃SiCl/HMPT (3eq./3eq.).

The course of our study on the organomanganese chemistry⁸ has induced us to reinvestigate the copper-catalyzed addition of organomagnesium reagents to α , β -ethylenic esters. We now report that good yields of 1,4-addition products are obtained in many cases by adding an organomagnesium reagent to an α , β -ethylenic ester, in THF at room temperature, in the presence of 3% CuCl and Me₃SiCl (1.2 eq.). Some examples are listed in Table I.

This reaction allows to perform in good yields the 1,4-transfer of primary, secondary and tertiary alkyl groups to

various β -monosubstituted α , β -ethylenic esters (entries 1 to 4 and 8 to 12). Even the β , β -bisubstituted α , β -ethylenic esters can be used successfully (entries 13 and 14) in spite of their well known poor ability to react with organocopper reagents to give the 1,4-addition products (e.g. with lithium dibutylcuprate the 1,2-addition occurs mainly)⁹.

DINA-01 201 0-01 1 2 -- 34- 0:01

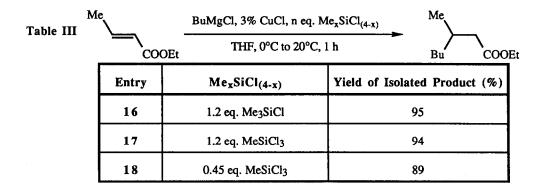
R'.

able I	R"Mg($\frac{\text{R}^{\text{r}}\text{MgCl}, 3\% \text{ CuCl}, 1.2 \text{ eq. Me}_{3}\text{SiCl}}{\text{R}^{\text{r}}} \qquad \qquad$			
R COOEt THF, 0°C to 20°C, 30 min to 1.5 h R COOF					
Entry	R	R'	R" (R"MgCl)	Yield (%) of Isolated Product ^a	
1	H	Me	Me	83	
2	Н	Me	Bu	94	
3	Н	Me	iPr	86	
4	H	Me	tBu	86	
5	Н	Me	Ph	20 (62) ^b	
6	Н	Me	CH ₃ CH=CH	34 (45) ^c	
7	Н	Pr	CH2=CHCH2	Oq	
8	Н	Pr	Bu	95	
9	Н	Pr	iPr	95	
10	Н	Pr	tBu	91	
11	Н	iPr	Bu	82	
12	Н	Ph	Bu	88	
13	Me	Me	Bu	82	
14	Me	Me	iPr	73 ^e	
15	Me	Me	Me	16 ^f	

a) All products have been isolated by distillation. b) 62% in the presence of 2 eq. of DMAP¹⁰. c) 43% in the presence of 2 eq. of DMAP¹⁰. d) Under the conditions described above, allylmagnesium chloride reacted with Me₃SiCl. In the absence of Me₃SiCl (only 3% CuCl), a mixture of the starting methyl crotonate with the 1,2-addition product was obtained (76% yield based on CH₂=CHCH₂MgCl). e) 16% of recovered enoate.

The conjugate addition of methyl cuprates to enoates is also known to occur with difficulty. As an example, with methyl magnesium bromide, the afore-mentioned Cu^{II} catalyzed reaction fails when CuBr₂ is used as a catalyst and it is necessary to replace it by Cu(N-iPr-Sal)₂¹¹ (cf Table II) to obtain a good yield⁷. As illustrated below, Cu^I halides are more efficient than Cu^{II} halides since the 1, 4-transfer of a methyl group to enoates takes place easily under our conditions. Moreover the reaction has been performed at room temperature with only stoichiometric amounts of methyl magnesium chloride and Me₃SiCl.

R'.


Table II	COOEt Me-Metal	
	Reaction Conditions	Yield
	1.5 eq.MeMgBr, 1% CuBr ₂ ; 3 eq. Me ₃ SiCl ether/THF (1/5), -46°C, 1 h	trace ⁷
	1.5 eq.MeMgBr, 1% Cu(N-iPr-Sal)2 ¹⁰ ; 3 eq. Me ₃ SiCl ether/THF (1/5), -46°C, 1 h	99% (crude product) ⁷
	1.04 eq. MeMgCl, 3% CuCl ² ; 1.2 eq. Me ₃ SiCl THF, 20°C, 1 h	92% (isolated product)

a) CuCl can be replaced by CuCN (3%), the 1,4 addition product is then obtained in 88% yield.

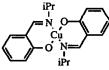
Nevertheless, it should be noted that with the β , β -bisubstituted α , β -ethylenic esters, the addition of a methyl group occurs only in low yields and the starting esters are recovered in a large extent (Table I, entry 15).

With the β -monosubstituted α , β -ethylenic esters, the main limitation of our procedure concerns the conjugate addition of aryl and alkenylmagnesium halides which gave poor yields (e.g. entries 5 and 6). Allylmagnesium halides react with Me₃SiCl. In the presence of 3%CuCl, they give only, as expected, the 1,2-addition product (entry 7)¹².

Interestingly we show below that Me₃SiCl can be replaced by MeSiCl₃ (cf Table III). This is the first time, to our knowledge, that this compound is used in place of Me₃SiCl for a conjugate addition. It is interesting to note that the three chlorine atoms participate in the reaction (compare entries 17 and 18). Accordingly, this activating/trapping reagent¹³ is more economical than Me₃SiCl¹⁴.

Our procedure offers the following advantages over the previous ones:

- the use of both low temperatures and additives such as BF3;Et2O or hazardous HMPT is avoided,
- the reaction occurs with methyl or ethyl esters,
- the copper chloride used as catalyst is a very common copper salt,
- only stoichiometric amounts of organomagnesium reagents are necessary,
- organomagnesium reagents prepared in ether or in THF can be used.


General Procedure : To 50 mmol of an α , β -ethylenic ester in 70 ml of THF are successively added CuCl (1.5 mmol, 3%), Me₃SiCl (60 mmol, 1.2 eq.) and then, at 0°C, RMgX (52 mmol, 1.04 eq., X= Cl or Br) as a THF or ether solution. After stirring for 30 min to 1.5 h at room temperature, the reaction mixture is hydrolyzed with a NH₄Cl solution (ca 80 ml) and, after decantation, the aqueous layer is extracted with ether. The organic layer is dried over MgSO₄ and, after removal of the solvents in vacuo, the product is isolated by distillation.

Notes and References.

- 1. For instance, with RCu, it is necessary to prepare RCuBF3. Moreover, the reaction must be performed in ether at -78°C and requires important excesses of reagents (e.g. 2 to 3 eq. for R= Bu and 10 eq. for R=Me): Y. Yamamoto, S. Yamamoto, H. Yatagai, Y. Ishihara and K. Maruyama, J. Org. Chem. 1982, <u>47</u>, 119. With R₂CuLi, it is necessary to add 1.2 eq. Me₃SiCl, the reaction takes place in ether at -78°C and only one of the two R groups is transfered: A. Alexakis, J. Berlan and Y. Besace, Tetrahedron Lett. 1986, <u>27</u>, 1047. With the higher order cyanocuprates R₂Cu(CN)Li₂, the reaction does not require any stabilizing or activating additives but they must be used at low temperature and only one of the two R groups reacts: B.H. Lipshutz, Tetrahedron Lett. 1983, <u>24</u>, 127.
- See ref 1. As mentioned above, only one of the two R groups is transfered with R₂CuLi or R₂Cu(CN)Li₂. With a valuable R group, the use of mixed higher order cyanocuprates such as R(2-thienyl)Cu(CN)Li₂, at -78°C, allows to circumvent this drawback since only the starting 2-thienyl lithium is lost: B.H. Lipshutz, J. Kozlowski, D. Parker, S. Nguyen and K. McCarthy, J. Organomet. Chem. 1985, <u>285</u>, 437.
- 3. J. Munch-Petersen, J. Org. Chem. 1957, <u>22</u>, 170. See also J. Munch-Petersen, Bull. Soc. Chim. France 1966, 471 and the references 24 to 30 quoted herein.
- 4. In most cases, 2 to 2.5 eq are necessary.
- 5. Y. Horiguchi, S. Matsuzawa, E. Nakamura and I. Kuwajima, Tetrahedron Lett. 1986, 27, 4025.
- 6. T. Kint-Larsen, V. Bitsch, I. Andersen, A. Jart and J. Munch-Petersen, Acta Chem. Scand. 1963, 17, 1426.
- 7. H. Sakata, Y. Aoki and I. Kuwajima, Tetrahedron Lett. 1990, 31,1161.
- 8. See, for instance, G. Cahiez and M. Alami, Tetrahedron Lett. 1989, <u>30</u>, 7365. See also the following communication in this journal.
- 9. Y. Yamamoto, S. Yamamoto, H. Yatagai, Y. Ishihara and K. Maruyama, J. Org. Chem. 1982, <u>47</u>, 119. See also H. House and M. Umen, J. Am. Chem. Soc. 1972, <u>94</u>, 5495 and ref. 6 quoted above.

10. DMAP (4-dimethylaminopyridine) is known to be as efficient as HMPA to improve the conjugate addition of an organocuprate to an enoate in the presence of R₃SiCl. However, until now, such an effect had never been observed in the case of a copper-catalyzed organomagnesium reagent. See S. Matsuzawa, Y. Horiguchi, E. Nakamura and I. Kuwajima, Tetrahedron 1989, <u>45</u>, 349.

11. The complex is:

- 12. With copper-catalyzed allylic Grignard reagents, in ether, the 1,2-addition is also the only reaction: J. Munch-Petersen, P. Jorgensen and S. Refn, Acta Chem. Scand. 1959, <u>13</u>, 1955.
- 13. The role of Me₃SiCl is both to trap the enolate as soon as it is formed and to accelerate the addition reaction rate. See ref. 5 quoted above.
- 14. According to the Aldrich catalogue, 1.2 eq. Me₃SiCl is twice as expensive than 0.45 eq. MeSiCl₃. The influence of some monochlorosilanes has already been studied: E. Nakamura, S. Matsuzawa, Y. Horiguchi and I. Kuwajima, Tetrahedron Lett. 1986, <u>27</u>, 4029. However, to our knowledge, the influence of polychlorosilanes has never been reported.

(Received in France 21 June 1990)